HTTP 大文件传输

数据压缩

说到的“数据类型与编码”吗?如果你还有印象的话,肯定能够想到一个最基本的解决方案,那就是“数据压缩”。

通常浏览器在发送请求时都会带着“Accept-Encoding”头字段,里面是浏览器支持的压缩格式列表,例如 gzip、deflate、br 等,这样服务器就可以从中选择一种压缩算法,放进“Content-Encoding”响应头里,再把原数据压缩后发给浏览器。

如果压缩率能有 50%,也就是说 100K 的数据能够压缩成 50K 的大小,那么就相当于在带宽不变的情况下网速提升了一倍,加速的效果是非常明显的。

过这个解决方法也有个缺点,gzip 等压缩算法通常只对文本文件有较好的压缩率,而图片、音频视频等多媒体数据本身就已经是高度压缩的,再用 gzip 处理也不会变小(甚至还有可能会增大一点),所以它就失效了。

gzip 的压缩率通常能够超过 60%,而 br 算法是专门为 HTML 设计的,压缩效率和性能比 gzip 还要好,能够再提高 20% 的压缩密度。

不过数据压缩在处理文本的时候效果还是很好的,所以各大网站的服务器都会使用这个手段作为“保底”。
例如,在 Nginx 里就会使用“gzip on”指令,启用对“text/html”的压缩。

Nginx 的 “gzip on” 指令很智能,只会压缩文本数据,不会压缩图片、音频、视频。

分块传输

在数据压缩之外,还能有什么办法来解决大文件的问题呢?

压缩是把大文件整体变小,我们可以反过来思考,如果大文件整体不能变小,那就把它“拆开”,分解成多个小块,把这些小块分批发给浏览器,浏览器收到后再组装复原。

这种“化整为零”的思路在 HTTP 协议里就是“chunked”分块传输编码,在响应报文里用头字段“Transfer-Encoding: chunked”来表示,意思是报文里的 body 部分不是一次性发过来的,而是分成了许多的块(chunk)逐个发送。

分块传输也可以用于“流式数据”,例如由数据库动态生成的表单页面,这种情况下 body 数据的长度是未知的,无法在头字段“Content-Length”里给出确切的长度,所以也只能用 chunked 方式分块发送。

“Transfer-Encoding: chunked”和“Content-Length”这两个字段是互斥的,也就是说响应报文里这两个字段不能同时出现,一个响应报文的传输要么是长度已知,要么是长度未知(chunked),这一点你一定要记住。

Transfer-Encoding 字段最常见的值是 chunked,但也可以用 gzip、deflate 等,表示传输时使用了压缩编码。
注意这与 Content-Encoding 不同,Transfer-Encoding 在传输后会被自动解码还原出原始数据,而 Content-Encoding 则必须由应用自行解码。

下面我们来看一下分块传输的编码规则,其实也很简单,同样采用了明文的方式,很类似响应头。

  1. 每个分块包含两个部分,长度头和数据块;
  2. 长度头是以 CRLF(回车换行,即\r\n)结尾的一行明文,用 16 进制数字表示长度;
  3. 数据块紧跟在长度头后,最后也用 CRLF 结尾,但数据不包含 CRLF;
  4. 最后用一个长度为 0 的块表示结束,即“0\r\n\r\n”;

chunk.png

不过浏览器在收到分块传输的数据后会自动按照规则去掉分块编码,重新组装出内容,所以想要看到服务器发出的原始报文形态就得用 Telnet 手工发送请求(或者用 Wireshark 抓包)。

GET /16-1 HTTP/1.1 Host: www.chrono.com

因为 Telnet 只是收到响应报文就完事了,不会解析分块数据,所以可以很清楚地看到响应报文里的 chunked 数据格式:先是一行 16 进制长度,然后是数据,然后再是 16 进制长度和数据,如此重复,最后是 0 长度分块结束。

data.png

范围请求

有了分块传输编码,服务器就可以轻松地收发大文件了,但对于上 G 的超大文件,还有一些问题需要考虑。

比如,你在看当下正热播的某穿越剧,想跳过片头,直接看正片,或者有段剧情很无聊,想拖动进度条快进几分钟,这实际上是想获取一个大文件其中的片段数据,而分块传输并没有这个能力。

HTTP 协议为了满足这样的需求,提出了“范围请求”(range requests)的概念,允许客户端在请求头里使用专用字段来表示只获取文件的一部分,相当于是客户端的“化整为零”。

范围请求不是 Web 服务器必备的功能,可以实现也可以不实现,所以服务器必须在响应头里使用字段“Accept-Ranges: bytes”明确告知客户端:“我是支持范围请求的”。

与 Range 有关的还有一个 If-Range ,即条件请求。

如果不支持的话该怎么办呢?服务器可以发送“Accept-Ranges: none”,或者干脆不发送“Accept-Ranges”字段,这样客户端就认为服务器没有实现范围请求功能,只能老老实实地收发整块文件了。

请求头 Range 是 HTTP 范围请求的专用字段,格式是“bytes=x-y”,其中的 x 和 y 是以字节为单位的数据范围。要注意 x、y 表示的是“偏移量”,范围必须从 0 计数,例如前 10 个字节表示为“0-9”,第二个 10 字节表示为“10-19”,而“0-10”实际上是前 11 个字节。

Range 的格式也很灵活,起点 x 和终点 y 可以省略,能够很方便地表示正数或者倒数的范围。
假设文件是 100 个字节,那么:

  1. 0-”表示从文档起点到文档终点,相当于“0-99”,即整个文件;
  2. “10-”是从第 10 个字节开始到文档末尾,相当于“10-99”;
  3. “-1”是文档的最后一个字节,相当于“99-99”;
  4. “-10”是从文档末尾倒数 10 个字节,相当于“90-99”;

服务器收到 Range 字段后,需要做四件事。

第一,它必须检查范围是否合法,比如文件只有 100 个字节,但请求“200-300”,这就是范围越界了。服务器就会返回状态码 416,意思是“你的范围请求有误,我无法处理,请再检查一下”。

第二,如果范围正确,服务器就可以根据 Range 头计算偏移量,读取文件的片段了,返回状态码“206 Partial Content”,和 200 的意思差不多,但表示 body 只是原数据的一部分。

第三,服务器要添加一个响应头字段 Content-Range,告诉片段的实际偏移量和资源的总大小,格式是“bytes x-y/length”,与 Range 头区别在没有“=”,范围后多了总长度。例如,对于“0-10”的范围请求,值就是“bytes 0-10/100”。

最后剩下的就是发送数据了,直接把片段用 TCP 发给客户端,一个范围请求就算是处理完了。

例如下面的这个请求使用 Range 字段获取了文件的前 32 个字节:

GET /16-2 HTTP/1.1 Host: www.chrono.com Range: bytes=0-31

返回的数据是(去掉了几个无关字段):

HTTP/1.1 206 Partial Content Content-Length: 32 Accept-Ranges: bytes Content-Range: bytes 0-31/96 // this is a plain text json doc

有了范围请求之后,HTTP 处理大文件就更加轻松了,看视频时可以根据时间点计算出文件的 Range,不用下载整个文件,直接精确获取片段所在的数据内容。

不仅看视频的拖拽进度需要范围请求,常用的下载工具里的多段下载、断点续传也是基于它实现的,要点是:

  1. 先发个 HEAD,看服务器是否支持范围请求,同时获取文件的大小;
  2. 开 N 个线程,每个线程使用 Range 字段划分出各自负责下载的片段,发请求传输数据;
  3. 下载意外中断也不怕,不必重头再来一遍,只要根据上次的下载记录,用 Range 请求剩下的那一部分就可以了;

多端数据

刚才说的范围请求一次只获取一个片段,其实它还支持在 Range 头里使用多个“x-y”,一次性获取多个片段数据。这种情况需要使用一种特殊的 MIME 类型:“multipart/byteranges”,表示报文的 body 是由多段字节序列组成的,并且还要用一个参数“boundary=xxx”给出段之间的分隔标记。

多段数据的格式与分块传输也比较类似,但它需要用分隔标记 boundary 来区分不同的片段,可以通过图来对比一下。

mult_data.png

每一个分段必须以“- -boundary”开始(前面加两个“-”),之后要用“Content-Type”和“Content-Range”标记这段数据的类型和所在范围,然后就像普通的响应头一样以回车换行结束,再加上分段数据,最后用一个“- -boundary- -”(前后各有两个“-”)表示所有的分段结束。

GET /16-2 HTTP/1.1 Host: www.chrono.com Range: bytes=0-9, 20-29

得到的就会是下面这样:

HTTP/1.1 206 Partial Content Content-Type: multipart/byteranges; boundary=00000000001 Content-Length: 189 Connection: keep-alive Accept-Ranges: bytes --00000000001 Content-Type: text/plain Content-Range: bytes 0-9/96 // this is --00000000001 Content-Type: text/plain Content-Range: bytes 20-29/96 ext json d --00000000001--

报文里的“- -00000000001”就是多段的分隔符,使用它客户端就可以很容易地区分出多段 Range 数据。

总结

  1. 压缩 HTML 等文本文件是传输大文件最基本的方法;
  2. 分块传输可以流式收发数据,节约内存和带宽,使用响应头字段“Transfer-Encoding: chunked”来表示,分块的格式是 16 进制长度头 + 数据块;
  3. 范围请求可以只获取部分数据,即“分块请求”,实现视频拖拽或者断点续传,使用请求头字段“Range”和响应头字段“Content-Range”,响应状态码必须是 206;
  4. 也可以一次请求多个范围,这时候响应报文的数据类型是“multipart/byteranges”,body 里的多个部分会用 boundary 字符串分隔;

要注意这四种方法不是互斥的,而是可以混合起来使用,例如压缩后再分块传输,或者分段后再分块。

知识拓展

1. 分块传输数据的时候,如果数据里含有回车换行(\r\n)是否会影响分块的处理呢?

分块传输中数据里含有回车换行(\r\n)不影响分块处理,因为分块前有数据长度说明。

2. 如果对一个被 gzip 的文件执行范围请求,比如“Range: bytes=10-19”,那么这个范围是应用于原文件还是压缩后的文件呢?

Range 字段是针对于原文件的。
如果原文件是文本,在传输过程中被压缩,那么就应用于压缩前的数据。